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Abstract: In this paper, discrete complex images method 
(DCIM) is applied for calculation of electric field due to a verti-
cal electric (Hertzian) dipole VED in presence of ground. The 
main objective is to obtain fast and efficient solution of Som-
merfield integrals that arise in the mathematical formulation. 
The results show very good agreement with exact results. This 
approach is applied in high-frequency grounding analysis. 
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INTRODUCTION 
The Sommerfeld-type integrals (SI) are frequently en-

countered in a number of electromagnetic problems in-
volving radiation of vertical or horizontal electric dipole. 
Because of computationally inefficiency of exact integra-
tion (numerical difficulties due to oscillations, divergent 
behavior and singularities), SI has been studied exten-
sively during last decades. Various numerical and analyti-
cal techniques have been developed in order to obtain an 
exact numerical or an approximate solution.  

The discrete complex images method (DCIM) was in-
troduced for a large number of radiation problems when 
analysing multilayered microstrip antennas [1-5]. DCIM 
was also applied for electrostatic field computation [6]. 

This paper presents DCIM in analysis of electric field 
due to VED in presence of conduction half-space. It is a 
starting point of its application in the electromagnetic 
modelling of grounding conductors. The main objective is 
to avoid time consuming numerical integration of Som-
merfeld integral, which appears in the exact model of 
grounding system [9-10]. 

ELECTRIC FIELD EVALUATION 

Sommerfeld integrals for VED in presence of ground 
The problem to be solved is presented on fig.1. Con-

sider a VED of unit strength (Il=1) positioned above or 
within the ground (ground = medium 1, air = medium 2) 
(characterized by conductivity σ and  relative permittivity 
εr at source point (x’,y’,z’) and field observed in point 
(x,y,z), where 2 2( ) ( )x x y yρ ′ ′= − + − . 

Now, we will focus our analysis to evaluation of the 
z−component of the electric field due to a vertical electric 
(Herzian) dipole in air or within ground.  

 
 

Fig.1 – Elementary vertical electric dipole VED above or below 
ground (soil) 

The effect of the air-ground interface is presented by 
the reflected field from the interface which is formulated 
as Sommerfield integral of V type: V11 (source below and 
observer below ground) and V22 (source above and ob-
server above ground). 

We begin using definition for the fields in terms of the  
electric type Hertz vectors П as defined in [7-8]: 
• for source and field point in ground (z<0, z’<0) 
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• for source and field point in air (z>0, z'>0) 
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where,  
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Here, 11
dg  and 11

ig  are Green's function of source and 
image dipole in medium 1 (inedx 11): 
 11

1 1 1exp( ) /dg jk r r= −  (5a) 

 11
1 2 2exp( ) /ig jk r r= − , (5b) 

where 22
dg  and 22

ig  are Green's function of source and 
image dipole in medium 2 (index 22): 
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 22
0 1 1exp( ) /dg jk r r= −  (6a) 

 22
0 2 2exp( ) /ig jk r r= − . (6b) 

Notation r1 stands for the distance between the source 
dipole and the observation point in medium 1 or 2, and 
and r2 stands for the distance between the image dipole 
and the observation point in medium 1 or 2. 

The reflected field from the interface is formulated as 
a ‘Sommerfeld’ component V11 or V22 [7]: 
• for z<0 and z'<0 

 11 1 02 2
1 0 0 10

2 exp( ) ( )V z z
k k

J dγ ξρ ξ ξ
γ γ

∞

′= − +
+∫  (7a) 

• for z>0 and z'>0. 
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Here, k0 and k1 are corresponding wave numbers for me-
dium 1 and medium 2 defined by: 

  00
22

0 εµω=k εεµω 00
22

1 =k   (8) 

with complex relative dielectric constant: 
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and, 
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After some mathematical manipulations, and normali-
zation which eliminates the k0 dependence, the integrals 
are rewritten as 

 1
1 0 0 1

0 1 0 1

2 1{ exp( )}
u

I S k
u u k uε

= −
+

u a   (11) 

 0
2 0 0 0

0 1 0 0

2 1{ (
u

)}I S exp k u a
u u k uε

=
+

−  (12) 

where, 
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and a=abs(|z+z'|). 

DISCRETE COMPLEX IMAGES 
The solution of Sommerfeld integrals is based on the 

approximation of the fractional term in integrals I1 and I2 
by sum exponentials following the Prony method and the 
closed form solution of the following integral: 
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Our approach has the same foundation as presented in [3], 
but introduces different path approximation on the com-
plex λ plane (Fig.2).
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Fig.2 - Integration path on the complex λ plane 

VED in Air (Medium 2) 
In order to obtain the closed-form solution of the inte-

gral I2, it is necessary to obtain an appropriate analytically 
inverse-transformable presentation. We begin using ap-
proximation by a finite sum of complex exponential func-
tion of u0, given by following expression: 
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By this, it is possible to write 
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where,  
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Here ρ is the radial distance from dipole source to  the 
observation point. Each term in (17) represents one image 
located at complex distance, in literature well known as a 
complex image. 

Because of the complex character of u0, an approxi-
mated path is obtained by linear transformation related to 
a real variable t [3]: 

  (19) 2 2 0 2 2
1 1

exp( ) exp( )
N N

i i i
i i

a b u A B
= =

≅∑ ∑ it

using linear transformation: 
 010 ctcu +=   where . (20) ],0[ 0Tt∈

Here, c1 and c2 are constants to be determined; T0 is 
the truncation point of the approximation process, which 
should be positive and greater than √(εr). It is to empha-
sise here, that the ending point obtained when t=T0 is al-
lowed to be elsewhere in the first quadrant (at T2a, or T2b, 
or..  T2n) along the original path, as presented on fig. 3.  

By using, 12
0 −= λu  it may be written: 
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Fig.3 - Approximation path on the complex u0 plane 

- if t=0,  the starting point L1=0 in the complex λ 
plane is transformed  to corresponding point T1=u0(0)=j, 
on the complex u0 plane; 

- if t=T0,  the ending point λ2=P+jQ on the complex λ 
plane is transformed to corresponding point 
T2 = u0(T0)=√[(P+jQ)2-1] (P>0, Q>0), on the complex u0 
plane. 

The transformed approximated path is shown on 
Fig.3.  

Now, equation  (20) can be written as 
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The coefficients P and Q are chosen arbitrarily for an 
appropriate example. As a special case, we find that the 
approximation path defined in [3] is determined if 
P2=T0

2+1 and Q=0. 
Using (16), (19) and (21) the complex coefficients A2i 

and B2i are determined. After that, using (19) and (21) the 
complex coefficients a2i and b2i are obtained as 
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and, 
 . (23) 2 2 2exp( )i i ia A jb= −

It is shown that DCIM results are in excellent agree-
ment comparing with exact numerical integration. The 
calculated error is less than 1%. 

VED in Ground (Medium 1) 
The closed-form solution of integral I1 is obtained fol-

lowing the same procedure. Firstly,  a finite sum of com-
plex exponential function of u1 is introduced as: 

 1
1 1

10 1

2
exp( )

N

i i
ir

u
a b u

u uε =

≅
+ ∑ 1  (24) 

where a1i and b1i are complex coefficients to be de-
termined.  

By this approximation the closed-form solution of the 
integral I1 is obtained as 
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By using the exponential approximation it becomes: 
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In this case, an approximated path on the complex  u1 
plane is defined as 
 1 1u c t c= +  where  (28) ],0[ 0Tt∈

Where c1 and c2 are constants to be determined, and T0 
is the truncation point of the approximation process, 
which should be positive and greater than √(εr). 

By using  2
1u λ ε= −  it may be written: 

- the starting point L1=0 is transformed  to corre-
sponding point T1=u1(0)=j√(ε) on the complex u1 plane, 

- the ending point L2=U+jW on the complex λ plane is 
transformed to corresponding point 
T2 = u1(T0)=√[(U+jW)2-ε] on the complex u1 plane. 

The transformed approximated path is shown on 
Fig.4.  Now, equation  (28) becomes 
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The coefficients U and W are chosen arbitrarily. There 
are a lot of various constants U and W that may be used to 
determine a corresponding approximation path. As a spe-
cial case, we find the approximation path defined in [3] to 
be determined if U2=T0

2+1 and W=0. 
Combining equations (24), (27) and (29) we obtain 

the coefficients A1i and B1i. Now, using (27) and (29) 
complex coefficients a1i and b1i are obtained as 
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Fig.4 - Approximation path on the complex u1 plane 



It is shown that DCIM approximate results are not al-
ways acceptable comparing with results of exact numeri-
cal integration. It is shown that a vertical distance from 
source to field point is limiting factor. 

 

NUMERICAL RESULTS  
Consider a vertical grounding rod with radius of 

0.00025λ0, extending from a height of z=0.25λ0 to a 
depth of -0.3λ0 (λ0 - free space wavelength). The ground 
is characterized by relative complex constant ε=16-j16. 
The analysis uses ng=30 segments for the ground stake, 
and na=25 segments for the upper part of the grounding 
rod. 

To obtain current distribution along the conductor, the 
calculation of impedance matrix involves Sommerfeld 

integral to be calculated  times.  
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The results of DCIM show that if vertical distance 
a=(z+z') is larger than 0.05λ0, the calculated error com-
pared to exact solution is less than 3%.  

It means that exact numerical integration can be re-

duced to  times. The results presented in Table I are 

obtained using N=9 discrete complex images, with T

∑
=

!10

1i
i

0=16, 
and constants U=1.273 and W=2.489. 

Table I 
Differences in % comparing exact numerical solution of Som-

merfeld integrals and DCIM results. 

f (MHz) a=.05λ0 a=.01λ0 a=0.3λ0

5 3.1% 0.65% 0.0173% 

10 2.58% 0.42% 0.0044% 

15 2.56% 0.41% 0.0040% 

20 2.54% 0.40% 0.0042% 

50 2.53% 0.398% 0.0039% 

100 2.53% 0.397% 0.0038% 

 

CONCLUSION 
In this paper discrete complex images method (DCIM) 

is used to obtain approximate fast solution of Sommerfeld 
integral that appears in the analysis of VED in presence 
of air-ground half-space. The results may be used in 
modelling vertical grounding electrode penetrating the 
ground. Thus, the time consuming direct numerical 
evaluation of the Sommerfield-type integrals is com-
pletely or partially avoided. 
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